
N95- 31248

EXPERIMENTAL CONTROL IN SOFTWARE RELIABILITY CERTIFICATION

Carmen J. Trammell and Jesse H. Poore

Software Quality Research Laboratory
University of Tennessee

There is growing interest in
software "certification," i.e., confirmation

that software has performed satisfactorily
under a defined certification protocol.
Regulatory agencies, customers, and
prospective reusers all want assurance that
a defined product standard has been met.

In other industries, products are
typically certified under protocols in which
random samples of the product are drawn,
tests characteristic of operational use are
applied, analytical or statistical inferences
are made, and products meeting a standard
are "certified" as fit for use. A warranty
statement is often issued upon satisfactory
completion of a certification protocol.

The statistical principles that
underlie such product protocols have long
been advocated by Mills and colleagues
[1,2,3,4] and Musa and colleagues [5,6,7]
as the basis for software reliability
certification. The terminology used by
Mills and Musa differs slightly, but their
ideas are similarly drawn from scientific
approaches to product certification in

mature engineering disciplines. The
terminology of Mills will be used in this
paper.

"Statistical testing" was conceived
by Mills and has been advanced by his
colleagues at IBM, Software Engineering
Technology Inc., and the University of
Tennessee. In statistical testing,

(1) expected operational use is represented
in a usage model of the software,

(2) test cases are randomly generated from
the usage model,

(3) test cases are executed in an
environment that simulates the

operational environment, and

(4) failure data are interpreted according to
mathematical and statistical models.

Methods for the construction of usage
models (8,9) and the interpretation of
failure data (10) have been given. Usage
models are developed before testing, and
interpretation of failure data occurs after

testing. Proper experimental control during
testing is critical to the integrity of the

protocol, however, and has not previously
been addressed.

This paper outlines specific
engineering pracuces that must be used to

preserve the validity of the statistical
certification testing protocol. The
assumptions associated with a statistical

experiment are given, and their implications
for statistical testing of software are

described. The ideas in this paper have
evolved from experience zn fifteen
Cleanroom projects conducted in the

Software Quality Research Laboratory at
the University of Tennessee.

The Slippery Slope

It was a typical day in the testing
phase of a software development project at
ACME Software.

Jane had been testing for hours, and her
mind was drifting. She took a break.
When she returned and ran the next test

case, she noticed something unexpected,
but she knew this unexpected event had to
have been happening all along. She
realized she had been too tired to observe it

when it first occurred. She didn't know
when it had first shown up.

John and Mary were both running test
cases. John saw a screen event and

SEW Proceedings 249 SEL-94-O06

thought it was expected behavior. Mary
saw the same event and recorded it as

unexpected behavior.

Joe suddenly realized that there was an
error in his part of the code, and he was
anxious to fix it. He waited until testers
had stopped for the day, made the change,
and recompiled. The testers would
continue their work the next day using his
new version. He knew he had made the

change and recompiled properly, so there
was no need to bother the test team about
this.

Michael looked over the stack of test cases
and saw that they varied greatly in length.
He knew that they had been randomly

generated, so he assumed that they were all
equally usable test cases. He rifled through
the stack and picked the shortest ones so he
could run the most cases in the least time.

Deborah was a new hire assigned to take

the place of a certification engineer who left
the company abruptly. She worked with
the experienced engineer for a day, and
then started testing on her own. She
couldn't really read the spec to check the

details of correct output, so she decided to
just use her best judgment and not bother
the others unless she was really confused.

Bill had an extremely long test case. In the
middle of the test case, the prescribed
events led him back to the Main Menu.

Ordinarily, a test case would end at this
point, but this case called for a second
major scenario. Bill decided the case was
unreasonably long, and counted the second
major scenario as a new test case.

These very common events are
threats to the integrity of a statistical

approach to software testing. Statistical
software testing, as a scientific endeavor in
the real world, inevitably requires some
compromises in methodological purity, and
it is important to understand the nature of

the slippery slope. The assumptions
underlying a statistical experiment must be

understood, the practical threats to

experimental integrity must be recognized,
and a strategy for experimental control must
be employed.

Software Testing as a Statistical

Experiment

In statistical certification testing,

software testing is viewed as a statistical
experiment. A subset of all possible uses
of the software is generated, and

performance on the subset is used as a
basis for conclusions about general
operational reliability. In standard
experimental parlance, a "sample" is used
to draw conclusions about a "population."

Figure 1 shows the parallel between a
classical statistical experiment and statistical
software testing. Under a testing protocol
that is faithful to the principles of applied
statistics, a scientifically valid statement can
be made about the expected operational

performance of the software based on its
test performance.

The premise that must be accepted
as a starting point in this analogy is that it is
not possible to test all ways in which
software may be used. This is apparently
not a premise that can be assumed as
obvious. In a discussion of software

testing with the top software manager in a
large aerospace corporation, the
infeasibility of testing all possible usage
scenarios was cited as the motivation for

statistical testing. "But we have to test
every possible use of the software," he
said. "The kind of software we develop
could cause deaths if it is not tested

completely."

Software with an unbounded input

sequence length has a theoretically infinite
number of possible usage scenarios. For
software with only two user inputs, A and

B, the possible scenarios of use are A, B,
AA, AB, BB, BA, AAA, AAB, ABA,
BAA, and so on. Software with a bounded

but large input sequence length has a finite

2

SEW Proceedings 250
SEL-94-006

Statistical Experiment

statistiea12 y scientifwally
correct valid

selection generalization

@

StatisticalSoftware Testing

of

g_o_ or Ico_'°_F°, m

testcases I testingtof_eld
I

@
Figure 1. Software Testing as a Statistical Experiment

but astronomical number of possible usage
scenarios.

The functional testing community
measures test coverage in terms of function
coverage. But testing every function is not
the same as testing every combination of
functions. And testing every combination
of functions is not the same as testing every

possible sequence of functions.

The structural testing community
measures test coverage in terms of code
coverage. But testing every line of code is
not the same as testing every path. And
testing every path is not the same as testing
every possible sequence of paths.

There is really no question about
whether all possible scenarios of use will
be tested. They will not. The only
questions are how the population of uses
will be characterized, and how a subset of

test cases will be drawn. A random sample
of test cases from a properly characterized

population, if applied to the software with
proper experimental control, will allow
scientific generalization of conclusions
from testing to operational use. Any other
set of test cases, no matter how

thoughtfully constructed, will not.

Assumptions in a Statistical
Experiment

In a statistical experiment, a well-

defined procedure is performed under
specified conditions, and produces one of
two or more possible outcomes. Each
performance of the procedure is called a
"trial" of the experiment. The outcome data
from successive trials of the experiment can
be used to estimate the probability of each
of the outcomes. Figure 2 portrays the
general structure of a statistical experiment.

Several assumptions underlie the
validity of inferences from a statistical

3

SEW Proceedings 2 51 SEL-94-006

Theoretical View
(the undoable and

unknowable)

Population

The true occurrence

rate of outcomes in the

population...

Practical View
(the experiment)

Random Sample

@ -@ ...can be estimated

from the observed
occurrence rate of
outcomes in a sample

Figure 2. Structure of a Statistical Experiment

experiment, however. The assumptions are
as follows.

(1) Each trial is performed under the same
conditions.

(2) There is one outcome per trial.

(3) All outcomes are possible in each trial.

(4) Trials are independent.

The implications of these assumptions
for the testing protocol must be understood.
Proper experimental control in statistical
certification testing is essential to the
validity of the claims that result.

Meeting the Assumptions of a
Statistical Experiment in Statistical
Testing of Software

In statistical testing, a trial is ordinarily
considered to be a test case. A test case

generated from the usage model is a
complete usage scenario beginning with
some appropriate initial event (e.g.,
invocation, switchhook up, power on) and
ending with some appropriate final event
(e.g., termination, switchhook down,
power off). Other definitions of a trial are
possible, however, such as a single
transaction or some other set of
transactions. The certifier defines a trial in

a manner that is appropriate for the
application, and must do so in conjunction
with the form of generalization the certifier
wants to make about the population.

A statistical test case results in one

outcome from a specified set of possible
outcomes. The possible outcomes of a test
case, for example, may be defined as
{success, failure}. Under another design,
the possible outcomes might be {success,
cosmetic failure, serious nonblocking
failure, blocking failure, crash}. Another
design still may entail outcomes of {0
failures, 1 failure, 2 failures 10 or more

4

SEW Proceedings 252
SEL-94-006

failures }. The challenges in experimental
control grow with the complexity of the
design since more granular judgments are
required.

Regardless of the design of the
statistical experiment---i.e., the definition
of a trial and the specified set of possible
outcomes---the foregoing assumptions
about a statistical experiment must be met in
the way trials are conducted and evaluated.

The implications of each of the
foregoing assumptions is considered next.
In the following discussion, a trial will be
regarded as a test case that has been
randomly generated from the usage model,
and the possible outcomes of the test case
will be regarded as success and failure.

Assumption 1: Each trial is performed
under the same conditions.

What "conditions" are relevant to the
conduct of a test case? The entities

associated with a test case are, at a
minimum,

• the software,

• the input,

• the system environment,

the basis for evaluation of

performance, and

• the tester (human or automated).

The software and the basis for evaluation of

performance are entities that can be held
constant; the input, the system environment
and the tester are not amenable to complete
control.

Software. The software used in
testing will not change unless it is
deliberately modified and recompiled. If it
is changed in any way, the statistical
experiment must begin anew. One may not

amass data over several versions of

software and treat them as a simple
statistical experiment. Such data may be
applied to reliability growth models that
predict growth as a function of performance
history and changes in the software, but
may not be used to estimate parameters of a
specific version of the software. Testing of
each version of the software is a separate
statistical experiment.

Input. To the extent that input varies
with classes of usage---e.g., novice vs.
expert, literary vs. mathematical subject
matter, new vs. mature database---separate
statistical experiments may be desirable.
Otherwise, input (regardless of its origin in
the system under test or another source)
may be directly incorporated in the usage
model structure and randomized via the

usage probability distribution (e.g.,
percentage access of short and long files).
The latter strategy effectively removes input
from the set of conditions to which

Assumption 1 applies by making it part of
the trial rather than part of the background.
This strategy also eliminates the distortion
that could result from tester bias toward the

shortest test cases, the "easiest" ones, the

most subjectively interesting ones, etc.

System Environment. The system
environment is perhaps the most illusive of
the conditions to be controlled. Variability
of background will be a feature of the real
operational environment, however, so the
experimental task is to simulate a test
environment with variability that is typical
of the actual environment. Concurrent

activity, system load, interrupt schedules,
etc., make for a constantly changing
background. Again, key variables may be
directly incorporated in the usage model
structure and randomized via the usage
probability distribution.

Basis for Evaluation. The basis for
evaluation of a test case may be the
specification, an independent "oracle," or
both. It is not uncommon for a

specification to change at any stage of

5

SEW Proceedings 2 53 SEL-94-006

development, including testing. Consistent
evaluation criteria must be applied within a

testing experiment, however. Behavior that
is regarded as correct (or incorrect) in one
test case must be evaluated the same way in
any other test case applied to that version of
the software.

Tester. A given human tester may
vary in the way he or she conducts and
evaluates test cases, and the performance of
any two testers may vary. Training,
alertness, motivation, perception, and any
number of other variables may affect the
performance of human testers. While
complete control over these factors is
impossible, most of the variability can be
eliminated through

coordination of all test activities by a

chief certification engineer,

• thorough tester training,

explicit policies about test materials,
session length, and data collection,

documented guidance about issues on
which the "test script" is not explicit,

periodic "recalibration" of testers
through paired performance of test
cases with the chief certification

engineer, and

timely communication among testing
team members with regard to
observations and decisions that may

affect test judgment.

Assumption 2: There is one outcome per
trial.

If the specified set of outcomes (i.e.,
elementary events) is {success, failure},
then the outcome of a test case is either one
success or one failure; it is not both, not
two successes, and not two (or more)

failures. A success is a test case in which
the software performs correctly on all

inputs in the test case; otherwise, the test
case is counted as a failure.

In the strictest sense, then, counting of
successes and failures is a simple matter.
The number of successes plus the number

of failures equals the number of test cases
run.

The implication of one-outcome-per-
trial is that a test case must be counted as a

failure as soon as a failure on any input
occurs. This is an unpopular policy,
however, because a minor but unavoidable
failure that occurs early in every test case
will drive the measured reliability of the
version to zero even though the software

does most everything correctly.

An organization using statistical
certification testing must develop a testing
policy that accommodates the assumption
of one-outcome-per-trial, yet allows testing
to proceed in the presence of minor
failures. Policy options may be politically
difficult (e.g., counting every failure, with
the result that status reports show declining
reliability) or scientifically suspect (e.g.,
not counting recurrences of a failure, such
that a correct fix and independence of
failures must be assumed). Policies each

have their advantages and disadvantages.
A reasoned policy must be reached and
used, however, so that the implications for
the integrity of the statistical experiment are
understood.

Assumption 3: All outcomes are possible in
each trial.

All possible scenarios of usage must
be candidates for selection in each trial,

such that all the ways the software could
succeed and all the ways it could fail are
potentially observable.

In addition, this assumption implies
that testing must not proceed in the
presence of "blocking" failures. If an input
is unreachable due to a blocking failure that

SEW Proceedings 254
SEL-94-006

is "not counted" upon recurrence, then
success or failure that would result from the

input cannot be observed. The detection of
a blocking failure is grounds for stopping
the testing process and creating a new
version of the software.

Assumption 4: Trials are independent.

Trials are independent if the outcome
of one trial has absolutely no connection
with the probability of the outcome of any
subsequent trial. For software, trials (i.e.,
test cases) are independent if the success or

failure of one test case has no beating on
the success or failure of any subsequent test
case.

It may be argued that this assumption
cannot be met since programs build up state
information over successive runs. Since

state data is the encapsulation of input
history, the input in one trial may result in a
change in state, and the new state may
increase the probability of exposing a
program defect---i.e., producing a failure---
in a subsequent trial.

The only certain way to avoid
dependency between failures is to fix each
fault and corresponding state data after a
failure, and restart testing with the new
version of the software.

Alternatively, it may be possible to
either avoid or randomize state data. Two

types of state information exist: internal
variables and external files. Internal
variables exist for the duration of an
execution. A test case that ends in

termination, therefore, will not carry over
internal state data to the next run. External

files persist from one execution to the next,
of course, but it is often not necessary to
use them in sequential runs; their use may
be randomized. Test cases of word

processing software, for example, may
randomly access one of a number of files
(e.g., no file; short and long files; narrative
and equation-filled files; etc.) according to
an expected usage distribution.

Regression testing is a common
violation of the assumption of independent
trials. If previously used test cases are run
on a new version of the software, they
should not be counted as new trials.

Independence of trials in statistical
software testing is defensible, but requires
a deliberate strategy---either fixing failures
as they are found, avoiding the carryover of
state data, or randomizing state data
according to an expected usage distribution.

The Slippery Slope Revisited

ACME Software improved control
over its software testing process by
establishing a documented testing protocol
and training the project team. Things were
different in the next project.

Before testing began, the testing team
reviewed the specification, the test script,
and other reference materials in detail. The
group executed the first several test cases
together, with each person taking a turn as
the tester. The group reconvened at several
points in testing for brief "recalibration"
sessions. John and Mary's evaluations of
test cases were much more consistent this
time.

As prescribed by the protocol, Jane took a
short break after each testing hour to review
her annotations on the test script, update the

chief certification engineer on her progress,
and confer with other testers. She was
much more alert and attentive to detail as a
result.

Joe now understood that the product
reliability claim would only be valid if
engineering changes were made in a
controlled way. Everyone understood that
any deviation from the protocol was to be
discussed by the team so that the impact on
the integrity of the testing process could be
determined

SEW Proceedings 2 55 SEL-94-006

Michael and Bill both now understood the Test

"selection bias" that could result from
picking and choosing among test cases, •
subdividing test cases, or otherwise altering
the randomly generated sample of test
cases. They now executed test cases in the
order in which the test cases were •

generated

Testers recorded all choices and

observations as notes on the test script. •
Anyone with points of uncertainty---such
as new hires---could later go over the
specifics with the chief certification
engineer to ensure the correctness of •
evaluations.

The Engineering Practice of
Statistical Reliability Certification

ff test team members are aware of the

threats to experimental integrity, they can °
approach the innumerable decisions that
must be made during testing with an eye
toward preserving the validity of results.
Recommendations for control over the •

testing process in the foregoing discussion
are summarized here.

Test Preparation

Define a test case as a usage scenario
that is a longer period than the
software can retain internal state data

(e.g., invocation-to-termination).

Randomize external state data via the

usage probability distribution.

Define the system environment(s), and
either establish different usage models
for different environments or sustain

the conditions in a given environment
throughout testing.

Train test staff to ensure a common

understanding of all test materials and

policies, and monitor performance to
prevent "drift."

Case Execution and Evaluation

Hold the specification and independent
oracle constant for each version of the
software that is tested.

Assign each test case one outcome
from the specified set of possible
outcomes.

Run test cases in the order in which

they are generated. Do not pick and
choose.

If previously used test cases are rerun
on a new version, they should be

performed for peace-of-mind only and
not counted as new random trials.

If a "blocking" failure occurs, stop and
create a new version.

If a failure occurs which could

conceivably cause a subsequent
failure, stop and create a new version.

Schedule regular communication
between test team members for

discussion of matters that may affect
test judgment.

Surviving the Compromises of
Everyday Practice

A sound testing strategy may be
compromised in practice if the rationale for
the strategy is not well understood, is not
embodied in a documented process, or is
not practiced as documented. Indeed, "the
difference between theory and practice in
practice is greater than the difference
between theory and practice in theory."

The threats to validity in certification
testing can largely be controlled through
understanding the assumptions in a
statistical experiment, establishing explicit
policies to meet them, and monitoring
adherence to the policies in practice. Such
experimental control is necessary to sound

SEW Proceedings 256
SEL-94-O06

footing on the slippery slope of applied
science.

References

1. Currit, P. Allen, Michael Dyer, and
Harlan D. Mills. "Certifying the Reliability
of Software." IEEE Transactions on

Software Engineering, Vol. SE-12, No. 1,
January 1986.

2. Mills, H. D., M. Dyer, and R. C.
Linger. "Cleanroom Software
Engineering." IEEE Software, September,
1987, pp. 19-24.

3. Mills, H. D. and J. H. Poore.

"Bringing Software Under Statistical
Quality Control." Quality Progress,
November 1988.

4. Cobb, R. H. and H. D. Mills.

"Engineering Software Under Statistical
Quality Control." IEEE Software,
November 1990.

5. Musa, J.D., A. Iannino, and K.
Okumoto. Software Reliability:
Mea_;urement, Prediction, Application.
McGraw-Hill: New York, 1987.

6. Musa, J.D. and William W. Everett.

"Software-Reliability Engineering:
Technology for the 1990s." IEEE
Software, November 1990.

7. Musa, John D. "Operational Profiles in
Software-Reliability Engineering." IEEE

Software, March 1993.

8. Whittaker, James A. and J.H. Poore.

"Markov Analysis of Software
Specifications." Transactions on Software
Engineering and Methodology, January
1993.

9. Walton, Gwendolyn H., J.H. Poore
and Carmen J. Trammell. "Software

Usage Modeling." Software Practice and

Experience, to appear.

10. Poore, J. H., Harlan D. Mills, and

David Mutchler. "Planning and Certifying
Software System Reliability." IEEE
Software, January 1993.

SEW Proceedings 257 SEL-94-006

EXPERIMENTAL CONTROL IN

SOFTWARE RELIABILITY CERTIFICATION

17th Annual Software Engineering Workshop

NASA/Goddard Space Flight Center

Carmen Trammell

University of Tennessee

UNIV. OF TENN. SOFTWARE ENGINEERING FOCUS:

ADVANCES IN CLEANROOM PRACTICE

• Software Quality Research Laboratory

• Fifteen Cleanroom projects since 1988

• Student employees, high turnover

• Statistical testing (Mills and Musa) is used

SEW Proceedings 258
SEL-94-006

SOFTWARE TESTING AS A

STATISTICAL EXPERIMENT

Statistical Experiment

statistically sCiev_cf._ally

CO #I

Software Testing

_tiOgenerationof _ j conclusions nfr_°fm

test c_ting to field

SYMPTOMS OF POOR TESTING PROCESS CONTROL

• Delayed observation of failures

• Conflicting evaluations by testers

• Picking and choosing among test cases

• Unauthorized engineering changes

• Lack of communication by new testers

SEW Proceedings 2 59 SE L-94-006

STRUCTURE OF A STATISTICAL EXPERIMENT

Theoretical View

(the undoable Population

and unknowable_/.,, : _ _ Th:utrurreencerate

[........... u,u_ _ outcomes ot all enals)of outcomes, in

_ the population.

Practical View

(the experiment) Random Sample
...can be

estimated from
the observed

occurrence rate

of outcomes in a
sample

ASSUMPTIONS IN A STATISTICAL EXPERIMENT

(1) Each trial is performed under the same conditions.

(2) There is one outcome per trial.

(3) All outcomes are possible in each trial.

(4) Trials are independent.

SEW Proceedings 260
SEL-94-006

ASSUMPTION (1)
Each trial is performed under the same conditions.

• the software

• the input

• the system environment

• the basis for evaluation of performance

• the tester (human or automated)

ASSUMPTION (2)

There is one outcome per trial.

the set of possible outcomes must be specified, e.g.,
- { success, failure}

- {no failures, minor failure, serious failure, crash}

- {0 failures, 1 failure, ...n or more failures}

recurrences of failures: to count or not to count?

counting recurrences results in reports of declining reliability
- not counting recurrences requires judgments about independence of failures

SEW Proceedings 261 SEL-94-006

ASSUMPTION (3)

All outcomes are possible in each trial.

all usage scenarios must be candidates for selection in
each trial

the outcome of each scenario must be observable...

testing cannot proceed in the presence of blocking
failures

ASSUMPTION (4)

Trials are independent.

• test cases must exceed the retention of internal state data

• external state data should be randomized

• regression tests must not be counted as new random trials

SEW Proceedings 262
SEL-94-006

LESSONS LEARNED ARE EMBODIED IN

THE CURRENT PROTOCOL

Test Preparation

• Define a test case as a usage scenario that is a longer period
than the software can retain internal state data (e.g.,
invocation -to-termination).

• Randomize external state data via the usage probability
distribution.

• Define the system environment(s), and either establish different
usage models for different environments or sustain the conditions

in a given environment throughout testing.

• Train test staff to ensure a common understanding of all test

materials and policies, and monitor performance to prevent
"drift."

LESSONS LEARNED ARE EMBODIED IN

THE CURRENT PROTOCOL

Test Case Execution and Evaluation

• Run test cases in the order in which they are generated.

• Hold the specification and oracle constant for each version

• Assign each test case one outcome from the set of possible
outcomes.

• If test cases are rerun, do not count them as new trials.

• If a "blocking" failure occurs, stop and create a new version.
If an observed failure could cause a subsequent failure, stop and
create a new version.

• Schedule regular communication for discussion of matters that
may affect test judgment.

SEW Proceedings 263 SEL-94-006

SEW Proceedings 264
SEL-94-006

